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What is risk? What is probability?

Glenn Shafer

• For 170 years: objective vs. subjective probability

• Game-theoretic probability (Shafer & Vovk, 2001) asks

more concrete question:

Is there a repetitive structure?
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Distinction first made by Simon-Dénis Poisson in 1837:

• objective probability = frequency = stochastic uncertainty =

aleatory probability

• subjective probability = belief = epistemic probability

Our more concrete question:

Is there a repetitive structure for the question and the data?

• If yes, we can make good probability forecasts. No model,

probability assumption, or underlying stochastic reality re-

quired.

• If no, we must weigh evidence. Dempster-Shafer can be

useful here.
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Who is Glenn Shafer?

A Mathematical Theory of Evidence (1976) introduced the

Dempster-Shafer theory for weighing evidence when the

repetitive structure is weak.

The Art of Causal Conjecture (1996) is about probability when

repetitive structure is very strong.

Probability and Finance: It’s Only a Game! (2001) provides a

unifying game-theoretic framework.

www.probabilityandfinance.com
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I. Game-theoretic probability

New foundation for probability

II. Defensive forecasting

Under repetition, good probability forecasting is possible.

III. Objective vs. subjective probability

The important question is how repetitive your question is.
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Part I. Game-theoretic probability

• Mathematics: The law of large numbers is a theorem about

a game (a player has a winning strategy).

• Philosophy: Probabilities are connected to the real world by

the principle that you will not get rich without risking

bankruptcy.
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Three heroes of game-theoretic probability

Blaise Pascal

(1623–1662)

Antoine Augustin

Cournot

(1801–1877)

Jean Ville

(1910–1988)

6



Blaise Pascal (1623–1662),
as imagined in the 19th
century by Hippolyte
Flandrin.

Pascal: Fair division

Peter and Paul play for $100. Paul is

behind. Paul needs 2 points to win,

and Peter needs only 1.

$?

$0Peter

Peter

Paul

Paul

$0

$100

If the game must be broken off, how

much of the $100 should Paul get?
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It is fair for Paul to pay $a in

order to get $2a if he defeats

Peter and $0 if he loses to

Peter.

$0

$a

$2a

So Paul should get $25.

$25

$0Peter

Peter

Paul

Paul

$50

$0

$100

Modern formulation: If the game

on the left is available, the prices

above are forced by the principle

of no arbitrage.
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Antoine Cournot (1801–1877)

“A physically impossible event

is one whose probability is

infinitely small. This remark

alone gives substance—an

objective and phenomenological

value—to the mathematical

theory of probability.” (1843)

Agreeing with Cournot:

• Émile Borel

• Maurice Fréchet

• Andrei Kolmogorov

Fréchet dubbed the

principle that an event of

small probability will not

happen Cournot’s principle.
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Émile Borel

1871–1956

Inventor of measure
theory.

Minister of the French
navy in 1925.

Borel was emphatic: the principle

that an event with very small proba-

bility will not happen is the only law

of chance.

• Impossibility on the human

scale: p < 10−6.

• Impossibility on the terrestrial

scale: p < 10−15.

• Impossibility on the cosmic

scale: p < 10−50.
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Andrei Kolmogorov

1903–1987

Hailed as the Soviet Euler,
Kolmogorov was credited
with establishing measure
theory as the mathematical
foundation for probability.

In his celebrated 1933 book, Kol-

mogorov wrote:

When P(A) very small, we

can be practically certain

that the event A will not hap-

pen on a single trial of the

conditions that define it.
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Jean Ville,

1910–1988, on

entering the École

Normale Supérieure.

In 1939, Ville showed that the laws

of probability can be derived from a

game-theoretic principle:

If you never bet more than

you have, you will not get in-

finitely rich.

As Ville showed, this is equivalent

to the principle that events of small

probability will not happen. We call

both principles Cournot’s principle.
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Game-theoretic law of large numbers (Shafer & Vovk 2001):

Simplest case: binary outcomes, even odds

K0 = 1.

FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − 1

2).

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 yi = 1

2 or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.
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Who wins? Skeptic wins if (1) Kn is never negative and (2)

either

lim
n→∞

1

n

n∑

i=1

yi =
1

2
or lim

n→∞Kn = ∞.

So the theorem says that Skeptic has a strategy that (1) does

not risk bankruptcy and (2) guarantees that either the average

of the yi converges to 0 or else Skeptic becomes infinitely rich.

Loosely: The average of the yi converges to 0 unless Skeptic

becomes infinitely rich.
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Part II. Defensive forecasting

Under repetition, good probability forecasting is possible.

• We call it defensive because it defends against a

quasi-universal test.

• Your probability forecasts will pass this test even if reality

plays against you.
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Part II. Defensive Forecasting

1. Thesis. Good probability forecasting is possible.

2. Theorem. Forecaster can beat any test.

3. Research agenda. Use proof to translate tests of Forecaster

into forecasting strategies.

4. Example. Forecasting using LLN (law of large numbers).
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We can always give probabilities with good calibration and

resolution.

PERFECT INFORMATION PROTOCOL

FOR n = 1,2, . . .

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

There exists a strategy for Forecaster that gives pn with good

calibration and resolution.
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FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

1. Fix p∗ ∈ [0,1]. Look at n for which pn ≈ p∗. If the frequency

of yn = 1 always approximates p∗, Forecaster is properly

calibrated.

2. Fix x∗ ∈ X and p∗ ∈ [0,1]. Look at n for which xn ≈ x∗ and

pn ≈ p∗. If the frequency of yn = 1 always approximates p∗,
Forecaster is properly calibrated and has good resolution.
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FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.
Forecaster can give ps with good calibration and resolution no

matter what Reality does.

Philosophical implications:

• To a good approximation, everything is stochastic.

• Getting the probabilities right means describing the past
well, not having insight into the future.
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THEOREM. Forecaster can beat any test.
FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

• Theorem. Given a test, Forecaster has a strategy

guaranteed to pass it.

• Thesis. There is a test of Forecaster universal enough that

passing it implies the ps have good calibration and

resolution. (Not a theorem, because “good calibration and

resolution” is fuzzy.)
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The probabilities are tested by another player, Skeptic.

FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

A test of Forecaster is a strategy for Skeptic that is continuous
in the ps. If Skeptic does not make too much money, the
ps pass the test.

Theorem If Skeptic plays a known continuous strategy,
Forecaster has a strategy guaranteeing that Skeptic never
makes money.
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Example: Average strategies for Skeptic for a grid of values of

p∗. (The p∗-strategy makes money if calibration fails for pn

close to p∗.) The derived strategy for Forecaster guarantees

good calibration everywhere.

Example of a resulting strategy for Skeptic:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Any kernel K(p, pi) can be used in place of e−C(p−pi)
2
.
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Skeptic’s strategy:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Forecaster’s strategy: Choose pn so that

n−1∑

i=1

e−C(pn−pi)
2
(yi − pi) = 0.

The main contribution to the sum comes from i for which pi is

close to pn. So Forecaster chooses pn in the region where the

yi − pi average close to zero.

On each round, choose as pn the probability value where

calibration is the best so far.
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Part III. Aleatory (objective) vs. epistemic (subjective)

From a 1970s perspective:

• Aleatory probability is the irreducible uncertainty that remains when
knowledge is complete.

• Epistemic probability arises when knowledge is incomplete.

New game-theoretic perspective:

• Under a repetitive structure you can make make good probability
forecasts relative to whatever state of knowledge you have.

• If there is no repetitive structure, your task is to combine evidence
rather than to make probability forecasts.
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Cournotian understanding of Dempster-Shafer

• Fundamental idea: transferring belief

• Conditioning

• Independence

• Dempster’s rule
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Fundamental idea: transferring belief

• Variable ω with set of possible values Ω.

• Random variable X with set of possible values X .

• We learn a mapping Γ : X → 2Ω with this meaning:

If X = x, then ω ∈ Γ(x).

• For A ⊆ Ω, our belief that ω ∈ A is now

B(A) = P{x|Γ(x) ⊆ A}.

Cournotian judgement of independence: Learning the relationship between
X and ω does not affect our inability to beat the probabilities for X.
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Example: The sometimes reliable witness

• Joe is reliable with probability 30%. When he is reliable, what he says is
true. Otherwise, it may or may not be true.

X = {reliable,not reliable} P(reliable) = 0.3 P(not reliable) = 0.7

• Did Glenn pay his dues for coffee? Ω = {paid,not paid}

• Joe says “Glenn paid.”

Γ(reliable) = {paid} Γ(not reliable) = {paid,not paid}

• New beliefs:

B(paid) = 0.3 B(not paid) = 0

Cournotian judgement of independence: Hearing what Joe said does not
affect our inability to beat the probabilities concerning his reliability.
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Art Dempster (born 1929) with his Meng & Shafer hatbox.

Retirement dinner at Harvard, May 2005.

See http://www.stat.purdue.edu/ chuanhai/projects/DS/ for Art’s D-S papers.
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Volodya Vovk atop the World

Trade Center in 1998.

• Born 1960.

• Student of Kolmogorov.

• Born in Ukraine, ed-

ucated in Moscow,

teaches in London.

• Volodya is a nick-

name for the Ukrainian

Volodimir and the

Russian Vladimir.
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EXTRA SLIDES

31



Think about the result of a gamble that does not risk more

than one’s initial capital.

The resulting wealth is a nonnegative random variable X with

expected value E(X) equal to the initial capital.

Markov’s inequality says

P (X ≥ E(X)

ε
) ≤ ε.

You have probability ε or less of multiplying your initial capital

by 1/ε or more.

Ville proved what is now called Doob’s inequality, which

generalizes Markov’s inequality to a sequence of bets.
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I.1. Cournotian understanding of conditional probability

Three explanations of conditional probability

• Abraham De Moivre: Rule of compound probability

• Bruno de Finetti: Coherence

• Antoine-Augustin Cournot: Excluded gambling strategy

The Cournotian explanation extends to Dempster-Shafer.
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Conditional probability is a way to update probabilities.

Probability updating

• You have probabilities

for A1, A2, B, and their

intersections.

• You learn A2 and noth-

ing more.

• What is your new prob-

ability for B?

A
1 A

2

B

Conventional answer:

P (B|A2) =
P (A2&B)

P (A2)

Why?
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Rule of compound probability: P (A2&B) = P (A2)P (B|A2)

Abraham de Moivre
(1667–1754)

De Moivre’s proof
assumes P (A) is the
fair price of a ticket
that pays 1 if A
happens.

In general,

• you pay P (A2) for 1 if A2 happens,

• you pay P (A2)x for x if A2 happens, and

• after A2 happens, you pay P (B|A2) for 1
if B happens.

To get 1 if A2&B if happens, pay

• P (A2)P (B|A2) for P (B|A2) if A2 happens,

• then if A2 happens, pay the P (B|A2) you
just got for 1 if B happens.
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De Moivre’s argument for the rule of compound probability

involves undefined concepts: fair price, knowledge. Many

people criticized this aspect of classical probability.

There are two ways of resolving the problem:

• Coherence. De Finetti took the viewpoint of the person

offering bets. This person should avoid sure loss.

• Cournot’s principle. Take the viewpoint of the person

deciding what bets to accept. Prices for gambles are fair

when you don’t think any strategy will beat them.
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Coherence

Suppose you must announce. . .

• P (A2) and P (A2&B),

interpreted as prices at which

you are offering to buy or sell

£1 tickets on these events.

• P (B|A2), interpreted as prices

at which you will offer to buy

or sell £1 tickets on B if A2

happens.

Bruno de Finetti (1906–1985)

Opponents can make

money for sure if you

announce P (A2&B)

different from

P (A2)P (B|A2).
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• You announce current prices for tickets on all relevant events.

• You also announce the price for B-tickets you will offer in the future if
A2 happens.

Critique: This eliminates explicit talk about “fair price” and “knowledge”.
But the plausibility of the assumptions depends on these ideas.

• Who would offer bets to people who know more? Surely the offers are
only to people with the same knowledge as you.

• You will not offer to take either side of a bet unless you think the odds
are fair given what you and others know.

• We must also assume that if A2 happens, its happening will be the only
new knowledge you and the others have. Otherwise your new price for
tickets on B may vary depending on the other new knowledge.
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Cournot’s principle

Take the viewpoint of the person deciding what bets to accept.

Prices being fair means you will not beat them.

More precisely: No matter how you bet, provided you avoid risk

of bankruptcy, you will not multiply your capital by a large

factor.

The proviso avoid risk of bankruptcy is motivated by Markov’s

inequality: If X is a nonnegative random variable with expected

value 1, then

P{X ≥ K} ≤ 1

K
.
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History of the principle

Antoine Cournot

1801–1877

Cournot located the meaning
of probability in the idea that
an event of tiny probability will
not happen.

Many 20th century giants agreed with
Cournot:

• Émile Borel (1871–1956)

• Maurice Fréchet (1878–1973)

• Paul Lévy (1886–1971)

• Andrei Kolmogorov (1903–1987)

The game-theoretic form of Cournot’s
principle says a bettor will not multiply
his capital substantially without risking
bankruptcy.

More general. Applies to games with
limited betting offers.

40



Cournot’s principle is about knowledge and fair price.

Order of play:

Forecaster gives prices for gambles.

Skeptic chooses gamble.

Reality decides outcome.

Skeptic is testing Forecaster. If Skeptic multiplies his capital
substantially without risking bankruptcy, we reject Forecaster.
His prices are not fair.

Forecaster’s prices express Skeptic’s knowledge when Skeptic
believes he has no strategy for beating these prices.

Laplace: Probability is relative, in part to our ignorance, in part
to our knowledge.
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Cournot’s principle is about the long run

We seldom test a single forecast, because a single bet that

does not risk bankruptcy usually has only modest payoffs.

Instead we test series of forecasts.

Cournotians are often called frequentists. But successive

forecasts are not necessarily identical and independent.

For n = 1,2, . . .

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).
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Game-theoretic law of large numbers (Shafer & Vovk 2001):

Simplest case: fair coin (binary outcomes, even odds)

K0 = 1.

FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − 1

2).

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 yi = 1

2 or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.
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Cournot’s principle is about strategies for Skeptic.

• A strategy for Skeptic tells him how to move on every

round, depending on what other players have done so far.

• Cournot’s principle: If we pick out a bankruptcy-free

strategy S for Skeptic, we can be confident Reality will

move so that S does not make Skeptic rich.

• This is analogous (equivalent in the fully probabilized case)

to saying that if we pick out an event E of small probability

in advance, E will not happen. Reality will respect the

probabilities.
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Abbreviate

these probabilities are in a series for which Cournot’s principle

holds

to

we will not beat these probabilities.
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Cournotian argument for P (A2&B)/P (A2) as the new probability for B

Claim: Suppose we will not beat P (A2) and P (A2&B). Suppose we learn A2

happens and nothing more. Then we can include P (A2&B)/P (A2) as a new
probability for B among the probabilities we will not beat.

Argument: Consider a bankruptcy-free strategy S against the three
probabilities. Let M , positive or negative, be the amount of B tickets S
buys after learning A2. Let S ′ be the strategy against P (A2) and P (A2&B)
alone obtained by adding

M tickets on A2&B and −M
P (A2&B)

P (A2)
tickets on A2 (1)

to S’s purchases of these tickets.
1. The tickets in (1) have net cost zero.
2. S ′ and S have the same payoffs.
3. So S ′ is bankruptcy-free like S.
4. A2’s happening is the only new information used by S. So S ′ uses only

the initial information.
5. By hypothesis, S ′ does not get rich. So S does not get rich either.
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Conditional probability in practice

In practice, you always learn more than A2.

• But you make a judgement that the other things you learn
do not matter.

• Not we learn A2 and nothing else.

• Rather we learn A2 and nothing else that can help us beat
Forecaster’s prices.

• Probability argument is always in a small world. We judge
initial and new knowledge outside this small world irrelevant.
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Advantages of Cournot

1. Role of knowledge and fairness explicit.

2. No need to know in advance you will learn A1 or A2 and nothing else.

3. Generalizes to case where knowledge is not expressed by additive
probabilities.

Disadvantages of Cournot

1. Not inside the mathematics. Uses soft concepts such as knowledge.

2. Repetition required.
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Cournot’s greatest advantage is its generality.

• Probability and Finance generalizes unconditional limit

theorems to the case of limited betting offers.

• probabilityandfinance.com Working Paper #3 generalizes

the argument for conditioning to Walley’s imprecise

probabilities.

• This talk generalizes the argument for conditioning to

Dempster-Shafer.
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I.2. Probabilistic independence

• De Moivre: The happening of A does not change the

probability of B.

• de Finetti: The happening of A does not change the price

at which you offer to buy or sell tickets on B.

• Cournot: The happening of A does not change the price

you will not beat for tickets on B. In practice: Neither the

happening of A nor your other new information will help

you beat the probability for B.
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Uncorrelated vs. independent

1. Y uncorrelated with X means the event X = x does not

affect the price of Y.

2. Y independent of X means the event X = x does not affect

probabilities for Y.

Y can be priced without being fully probabilized. So

uncorrelatedness is the wider notion.
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I.3. Cournotian understanding of Dempster-Shafer

• Fundamental idea: transferring belief

• Conditioning

• Independence

• Dempster’s rule
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Fundamental idea: transferring belief

• Variable ω with set of possible values Ω.

• Random variable X with set of possible values X .

• We learn a mapping Γ : X → 2Ω with this meaning:

If X = x, then ω ∈ Γ(x).

• For A ⊆ Ω, our belief that ω ∈ A is now

B(A) = P{x|Γ(x) ⊆ A}.

Cournotian judgement of independence: Learning the relationship between
X and ω does not affect our inability to beat the probabilities for X.
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Example: The sometimes reliable witness

• Joe is reliable with probability 30%. When he is reliable, what he says is
true. Otherwise, it may or may not be true.

X = {reliable,not reliable} P(reliable) = 0.3 P(not reliable) = 0.7

• Did Glenn pay his dues for coffee? Ω = {paid,not paid}

• Joe says “Glenn paid.”

Γ(reliable) = {paid} Γ(not reliable) = {paid,not paid}

• New beliefs:

B(paid) = 0.3 B(not paid) = 0

Cournotian judgement of independence: Hearing what Joe said does not
affect our inability to beat the probabilities concerning his reliability.
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Example: The more or less precise witness

• Bill is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = {precise,approximate,not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

• What did Glenn pay? Ω = {0, £1, £5}

• Bill says “Glenn paid £5.”

Γ(precise) = {£5} Γ(approximate) = {£1, £5} Γ(not reliable) = {0, £1, £5}

• New beliefs:

B{0} = 0 B{£1} = 0 B{£5} = 0.7 B{£1, £5} = 0.9

Cournotian judgement of independence: Hearing what Bill said does not
affect our inability to beat the probabilities concerning his precision.
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Example: The witness caught out

• Tom is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = {precise,approximate,not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

• What did Glenn pay? Ω = {0, £1, £5}

• Tom says “Glenn paid £10.”

Γ(precise) = ∅ Γ(approximate) = {£5} Γ(not reliable) = {0, £1, £5}

We have a problem: Hearing what Tom said does help us beat the
probabilities concerning his precision. We now know he is not precise.
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Conditioning

• Variable ω with set of possible values Ω.

• Random variable X with set of possible values X .

• We learn a mapping Γ : X → 2Ω with this meaning:

If X = x, then ω ∈ Γ(x).

•
Γ(x) = ∅ for some x ∈ X .

• For A ⊆ Ω, our belief that ω ∈ A is now

B(A) =
P{x|Γ(x) ⊆ A & Γ(x) 6= ∅}

P{x|Γ(x) 6= ∅} .

Cournotian judgement of independence: Aside from the impossibility of the
x for which Γ(x) = ∅, learning Γ does not affect our inability to beat the
probabilities for X.
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Example: The witness caught out

• Tom is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = {precise,approximate,not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

• What did Glenn pay? Ω = {0, £1, £5}

• Tom says “Glenn paid £10.”

Γ(precise) = ∅ Γ(approximate) = {£5} Γ(not reliable) = {0, £1, £5}

• New beliefs:

B{0} = 0 B{£1} = 0 B{£5} = 2/3 B{£1, £5} = 2/3

Cournotian judgement of independence: Aside ruling out his being
absolutely precise, what Tom said does not help us beat the probabilities for
his precision.
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Independence

XBill = {Bill precise,Bill approximate,Bill not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

XTom = {Tom precise,Tom approximate,Tom not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

Product measure:

XBill & Tom = XBill ×XTom

P(Bill precise,Tom precise) = 0.7× 0.7 = 0.49

P(Bill precise,Tom approximate) = 0.7× 0.2 = 0.14

etc.

Cournotian judgements of independence: Learning about the precision of
one of the witnesses will not help us beat the probabilities for the other.

Nothing novel here. Dempsterian independence = Cournotian independence.

59



Dempster’s rule (independence + conditioning)

• Variable ω with set of possible values Ω.

• Random variables X1 and X2 with sets of possible values X1 and X2.

• Form the product measure on X1 ×X2.

• We learn mappings Γ1 : X1 → 2Ω and Γ2 : X2 → 2Ω:

If X1 = x1, then ω ∈ Γ1(x1). If X2 = x2, then ω ∈ Γ2(x2).

• So if (X1,X2) = (x1, x2), then ω ∈ Γ1(x1) ∩ Γ2(x2).

• Conditioning on what is not ruled out,

B(A) =
P{(x1, x2)|∅ 6= Γ1(x1) ∩ Γ2(x2) ⊆ A}
P{(x1, x2)|∅ 6= Γ1(x1) ∩ Γ2(x2)}

Cournotian judgement of independence: Aside from ruling out some (x1, x2),
learning the Γi does not help us beat the probabilities for X1 and X2.
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Example: Independent contradictory witnesses

• Joe and Bill are both reliable with probability 70%.

• Did Glenn pay his dues? Ω = {paid,not paid}

• Joe says, “Glenn paid.” Bill says, “Glenn did not pay.”

Γ1(Joe reliable) = {paid} Γ1(Joe not reliable) = {paid,not paid}
Γ2(Bill reliable) = {not paid} Γ2(Bill not reliable) = {paid,not paid}

• The pair (Joe reliable,Bill reliable), which had probability 0.49, is ruled
out.

B(paid) =
0.21

0.51
= 0.41 B(not paid) =

0.21

0.51
= 0.41

Cournotian judgement of independence: Aside from learning that they are
not both reliable, what Joe and Bill said does not help us beat the
probabilities concerning their reliability.
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You can suppress the Γs and describe Dempster’s rule in terms

of the belief functions

Joe: B1{paid} = 0.7 B1{not paid} = 0

Bill: B2{not paid} = 0.7 B2{paid} = 0

0.7

not paid

0.3

??

0.3     ??

0.7  paid

Bill

Joe

Paid

Not paid

B(paid) =
0.21

0.51
= 0.41

B(not paid) =
0.21

0.51
= 0.41
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Dempster’s rule is unnecessary. It is merely a composition of

Cournot operations: formation of product measures,

conditioning, transferring belief.

But Dempster’s rule is a unifying idea. Each Cournot operation
is an example of Dempster combination.

• Forming product measure is Dempster combination.

• Conditioning on A is Demspter combination with a belief function that
gives belief one to A.

• Transferring belief Dempster combination of (1) a belief function on
X ×Ω that gives probabilities to cylinder sets {x} ×Ω with (2) a belief
function that gives probability one to {(x, ω)|ω ∈ Γ(x)}.
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Art Dempster (born 1929) with his Meng & Shafer hatbox.

Retirement dinner at Harvard, May 2005.

64



Part II. Richer understanding of statistical modeling

• The perfect-information protocol for probability

• Mathematical statistics departs from probability by standing

outside the protocol.

• Classical example: the error model

• Parametric modeling

• Dempster-Shafer modeling
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The perfect-information protocol for probability

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces prices for various payoffs.

Skeptic decides which payoffs to buy.

Reality determines the payoffs.

Kn := Kn−1+ Skeptic’s net gain or loss.
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Mathematical statistics departs from probability by standing

outside the protocol in various ways.

Forecaster, Skeptic, and Reality see each others’ moves, but we do not.

• Usually Skeptic is not really there. We can take this player’s role if we
see the other players’ moves.

• Perhaps we do not see Forecaster’s moves. We infer what we can
about them from Reality’s moves. Or perhaps it is our job to make the
forecasts.

• Perhaps we see only a noisy or distorted version of Reality’s moves. We
infer what we can about them from Forecaster’s moves.
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Classical example: errors in measurement

A measuring instrument makes errors obeying some probability

distribution.

You do not see the errors e1, . . . , eN .

You only see measurements x1, . . . , xN , where

xn = θ + en.

How do you make inferences about θ?
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Parametric modeling. The parametric model Pθ is a class of

strategies for Forecaster.

K0 = 1.
FOR n = 1,2, . . . , N :

Forecaster gives prices pn following a strategy Pθ.
Skeptic makes purchases Mn following a strategy Sθ.
Reality announces yn.
K(θ)n := K(θ)n−1+ Skeptic’s net gain or loss.

Cournot’s principle: Not all the K(θ) get very large.

We see yn, and we know the strategies, but we do not know θ

and do not see pn and Mn.

If all the K(θ)N ≥ K for all θ, we reject the model. Otherwise,

those θ for which K(θ)N < K form a 1− 1
K confidence interval

for θ.
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Errors in measurement as a parametric model

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces (but not to us) the price θ.

Skeptic announces Mn ∈ R.

Reality announces yn ∈ R.

Kn := Kn−1 + Mn(yn − θ).

Winner: Skeptic wins if Kn is never negative and either KN ≥ K

or |y − θ| < ε, where y :=
∑N

n=1 yn.

According to Probability and Finance (p. 125), if N ≥ KC2/ε2

and Reality is constrained to obey yn ∈ [θ − C, θ + C], then

Skeptic has a winning strategy.
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Dempster-Shafer modeling. We see the moves by Forecaster
and Skeptic, but not those by Reality.

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces prices pn.

Skeptic makes purchases Mn.

Reality announces (but not to us) xn.

Kn := Kn−1+ Skeptic’s net gain or loss.

Cournot’s principle: With probability 1− 1
K , KN < K.

We see only yn = ω(xn) for some function ω. The mapping

Γ(x1, . . . , xN) = {ω|ω(xn) = yn, n = 1, . . . , N}
allows us to transfer the probabilities about x1, . . . , xN to beliefs
about ω.
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Errors in measurement as a Dempster-Shafer model.

K0 = 1.

FOR n = 1,2, . . . , N :

Forecaster announces the standard Gaussian distribution.

Skeptic chooses a function fn of the payoff xn.

Reality announces (but not to us) xn ∈ R.

Kn := Kn−1 + fn(xn)− E(fn(xn)).

We see only yn = ω + xn for some ω ∈ R. Conditioning on the

configuration x1 − x, . . . , xN − x, we get probabilities for ω.

Functions of configuration can be used to test the model.
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Part III. Extended examples. Elementary examples are

inadequate guides for dealing with the complications that arise

in real problems.

I would like to develop some examples over the next few years:

• Combining information in continuous auditing

• Fusing competing computational models (weather

forecasting, etc.)

• Fusing information in electronic defense (deciding who is

monitoring you with radar, etc.)
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The Idea of the Proof

Idea 1 Establish an account for betting on heads. On each

round, bet ε of the account on heads. Then Reality can keep

the account from getting indefinitely large only by eventually

holding the cumulative proportion of heads at or below 1
2(1+ ε).

It does not matter how little money the account starts with.

Idea 2 Establish infinitely many accounts. Use the kth account

to bet on heads with ε = 1/k. This forces the cumulative

proportion of heads to stay at 1/2 or below.

Idea 3 Set up similar accounts for betting on tails. This forces

Reality to make the proportion converge exactly to one-half.
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Definitions

• A path is an infinite sequence y1y2 . . . of moves for Reality.

• An event is a set of paths.

• A situation is a finite initial sequence of moves for Reality,
say y1y2 . . . yn.

• 2 is the initial situation, a sequence of length zero.

• When ξ is a path, say ξ = y1y2 . . . , write ξn for the situation
y1y2 . . . yn.
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Game-theoretic processes and martingales

• A real-valued function on the situations is a process.

• A process P can be used as a strategy for Skeptic: Skeptic

buys P(y1 . . . yn−1) of yn Skeptic in situation y1 . . . yn−1.

• A strategy for Skeptic, together with a particular initial

capital for Skeptic, also defines a process: Skeptic’s capital

process K(y1 . . . yn).

• We also call a capital process for Skeptic a martingale.
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Notation for Martingales

Skeptic begins with capital 1 in our game, but we can change
the rules so he begins with α.

Write KP for his capital process when he begins with zero and
follows strategy P: KP(2) = 0 and

KP(y1y2 . . . yn) := KP(y1y2 . . . yn−1) + P(y1y2 . . . yn−1)yn.

When he starts with α, his capital process is α +KP.

The capital processes that begin with zero form a linear space,
for

βKP = KβP and KP1 +KP2 = KP1+P2.

So the martingales also form a linear space.
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Convex Combinations of Martingales

If P1 and P2 are strategies, and α1 + α2 = 1, then

α1(1 +KP1) + α2(1 +KP2) = 1 +Kα1P1+α2P2.

—LHS is the convex combination of two martingales that each
begin with capital 1.

—RHS is the martingale produced by the same convex
combination of strategies, also beginning with capital 1.

Conclusion: In the game where we begin with capital 1, we can
obtain a convex combination of 1 +KP1 and 1 +KP2 by
splitting our capital into two accounts, one with initial capital
α1 and one with initial capital α2. Apply α1P1 to the first
account and α2P2 to the second.
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Infinite Convex Combinations: Suppose P1,P2, . . . are strategies
and α1, α2, . . . are nonnegative real numbers adding to one.

• If
∑∞

k=1 αkPk converges, then
∑∞

k=1 αkKPk also converges.

• ∑∞
k=1 αkKPk is the capital process from

∑∞
k=1 αkPk.

• You can prove this by induction on

KP(y1y2 . . . yn) := KP(y1y2 . . . yn−1) + P(y1y2 . . . yn−1)yn.

In game-theoretic probability, you can usually get an infinite convex
combination of martingales, but you have to check on the convergence of
the infinite convex combination of strategies. In a sense, this explains the
historical confusion about countable additivity in measure-theoretic
probability (see Working Paper #4).
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The greater power of game-theoretic probability

Instead of a probability distribution for y1, y2, . . . , maybe you have only a few
prices. Instead of giving them at the outset, maybe your make them up as
you go along. Instead of

Skeptic announces Mn ∈ R.
Reality announces yn ∈ {−1,1}.
Kn := Kn−1 + Mnyn.

use

Skeptic announces Mn ∈ R.
Reality announces yn ∈ [−1,1].
Kn := Kn−1 + Mnyn.

or

Forecaster announces mn ∈ R.
Skeptic announces Mn ∈ R.
Reality announces yn ∈ [mn − 1, mn + 1].
Kn := Kn−1 + Mn(yn −mn).
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Part I. Basics of Game-Theoretic Probability

1. Pascal & Ville

2. The strong law of large numbers. Infinite and impractical:

You will not get infinitely rich in an infinite number of trials.

3. The weak law of large numbers. Finite and practical: You

will not multiply your capital by a large factor in N trials.
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The weak law of large numbers (Bernoulli)

K0 := 1.

FOR n = 1, . . . , N :

Skeptic announces Mn ∈ R.

Reality announces yn ∈ {−1,1}.
Kn := Kn−1 + Mnyn.

Winning: Skeptic wins if Kn is never negative and either

KN ≥ C or |∑N
n=1 yn/N | < ε.

Theorem. Skeptic has a winning strategy if N ≥ C/ε2.
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Part II. Defensive Forecasting

1. Thesis. Good probability forecasting is possible.

2. Theorem. Forecaster can beat any test.

3. Research agenda. Use proof to translate tests of Forecaster

into forecasting strategies.

4. Example. Forecasting using LLN (law of large numbers).
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THESIS

Good probability forecasting is possible.

We can always give probabilities with good calibration and

resolution.

PERFECT INFORMATION PROTOCOL

FOR n = 1,2, . . .

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

There exists a strategy for Forecaster that gives pn with

good calibration and resolution.
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FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

1. Fix p∗ ∈ [0,1]. Look at n for which pn ≈ p∗. If the frequency

of yn = 1 always approximates p∗, Forecaster is properly

calibrated.

2. Fix x∗ ∈ X and p∗ ∈ [0,1]. Look at n for which xn ≈ x∗ and

pn ≈ p∗. If the frequency of yn = 1 always approximates p∗,
Forecaster is properly calibrated and has good resolution.
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FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.
Forecaster can give ps with good calibration and resolution no

matter what Reality does.

Philosophical implications:

• To a good approximation, everything is stochastic.

• Getting the probabilities right means describing the past
well, not having insight into the future.
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THEOREM. Forecaster can beat any test.
FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

• Theorem. Given a test, Forecaster has a strategy

guaranteed to pass it.

• Thesis. There is a test of Forecaster universal enough that

passing it implies the ps have good calibration and

resolution. (Not a theorem, because “good calibration and

resolution” is fuzzy.)
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The probabilities are tested by another player, Skeptic.

FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

A test of Forecaster is a strategy for Skeptic that is continuous
in the ps. If Skeptic does not make too much money, the
ps pass the test.

Theorem If Skeptic plays a known continuous strategy,
Forecaster has a strategy guaranteeing that Skeptic never
makes money.
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This concept of test generalizes the standard stochastic

concept.

Stochastic setting:

• There is a probability distribution P for the xs and ys.

• Forecaster uses P ’s conditional probabilities as his ps.

• Reality chooses her xs and ys from P .

Standard concept of statistical test:

• Choose an event A whose probability under P is small.

• Reject P if A happens.

In 1939, Jean Ville showed that in the stochastic setting, the

standard concept is equivalent to a strategy for Skeptic.
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Why insist on continuity? Why count only strategies for

Skeptic that are continuous in the ps as tests of Forecaster?

1. Brouwer’s thesis: A computable function of a real

argument is continuous.

2. Classical statistical tests (e.g., reject if LLN fails)

correspond to continuous strategies.
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Skeptic adopts a continuous strategy S.
FOR n = 1,2, . . .

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0,1].
Skeptic makes the move sn specified by S.
Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

We actually prove a stronger theorem. Instead of making Skeptic announce
his entire strategy in advance, only make him reveal his strategy for each
round in advance of Forecaster’s move.

FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem. Forecaster can guarantee that Skeptic never makes money.
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FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

Proof:

• If Sn(p) > 0 for all p, take pn := 1.

• If Sn(p) < 0 for all p, take pn := 0.

• Otherwise, choose pn so that Sn(pn) = 0.
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Research agenda. Use proof to translate tests of Forecaster

into forecasting strategies.

• Example 1: Use a strategy for Sceptic that makes money if Reality
does not obey the LLN (frequency of yn = 1 overall approximates
average of pn). The derived strategy for Forecaster guarantees the
LLN—i.e., its probabilities are calibrated “in the large”.

• Example 2: Use a strategy for Skeptic that makes money if Reality
does not obey the LLN for rounds where pn is close to p∗. The derived
strategy for Forecaster guarantees calibration for pn close to p∗.

• Example 3: Average the preceding strategies for Skeptic for a grid of
values of p∗. The derived strategy for Forecaster guarantees good
calibration everywhere.

• Example 4: Average over a grid of values of p∗ and x∗. Then you get
good resolution too.

93



Example 3: Average strategies for Skeptic for a grid of values

of p∗. (The p∗-strategy makes money if calibration fails for pn

close to p∗.) The derived strategy for Forecaster guarantees

good calibration everywhere.

Example of a resulting strategy for Skeptic:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Any kernel K(p, pi) can be used in place of e−C(p−pi)
2
.
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Skeptic’s strategy:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Forecaster’s strategy: Choose pn so that

n−1∑

i=1

e−C(pn−pi)
2
(yi − pi) = 0.

The main contribution to the sum comes from i for which pi is

close to pn. So Forecaster chooses pn in the region where the

yi − pi average close to zero.

On each round, choose as pn the probability value where

calibration is the best so far.
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Example 4: Average over a grid of values of p∗ and x∗. (The
(p∗, x∗)-strategy makes money if calibration fails for n where
(pn, xn) is close to (p∗, x∗).) Then you get good calibration and
good resolution.

• Define a metric for [0,1]×X by specifying an inner product space H
and a mapping

Φ : [0,1]×X → H

continuous in its first argument.

• Define a kernel K : ([0,1]×X)2 → R by

K((p, x)(p′, x′)) := Φ(p, x) ·Φ(p′, x′).

The strategy for Skeptic:

Sn(p) :=
n−1∑

i=1

K((p, xn)(pi, xi))(yi − pi).
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Skeptic’s strategy:

Sn(p) :=
n−1∑

i=1

K((p, xn)(pi, xi))(yi − pi).

Forecaster’s strategy: Choose pn so that

n−1∑

i=1

K((pn, xn)(pi, xi))(yi − pi) = 0.

The main contribution to the sum comes from i for which

(pi, xi) is close to (pn, xn). So we need to choose pn to make

(pn, xn) close (pi, xi) for which yi − pi average close to zero.

Choose pn to make (pn, xn) look like (pi, xi) for which we

already have good calibration/resolution.
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More talks in Paris

• 19 May, 10:00. Why did Cournot’s principle disappear?

EHESS, Séminaire de histoire du calcul des probabilités et

de la statistique, 54 boulevard Raspail

• 19 May, 14:00. Philosophical implications of defensive

forecasting. Séminaire de philosophie des probabilités

l’IHPST, la grande salle de l’IHPST, 13 rue du Four

• 5 July, 9:00-10:00. The game-theoretic framework for

probability. Plenary lecture, 11th IPMU International

Conference, Les Cordeliers, 15 rue de l’Ecole de médecine
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Standard stochastic concept of statistical test:

• Choose an event A whose probability under P is small.

• Reject P if A happens.

Ville’s Theorem: In the stochastic setting. . .

• Given an event of probability less than 1/C, there is a strategy

for Skeptic that turns $1 into $C without risking bankruptcy.

• Given a strategy for Skeptic that starts with $1 and does not

risk bankruptcy, the probability that it turns $1 into $C or

more is no more than 1/C.

So the concept of a strategy for Skeptic generalizes the

concept of testing with events of small probability.
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Continuity rules out Dawid’s counterexample

FOR n = 1,2, . . .
Forecaster announces pn ∈ [0,1].
Skeptic announces continuous sn ∈ R.
Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

Reality can make Forecaster uncalibrated by setting

yn :=

{
1 if pn < 0.5

0 if pn ≥ 0.5,

Skeptic can then make steady money with

sn :=

{
1 if p < 0.5

−1 if p ≥ 0.5,

But if Skeptic is forced to approximate sn by a continuous function of pn,
then the continuous function will have a zero close to p = 0.5, and so
Forecaster will set pn ≈ 0.5.
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THREE APPROACHES TO FORECASTING

FOR n = 1,2, . . .
Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.

1. Start with strategies for Forecaster. Improve by averaging (prediction
with expert advice).

2. Start with strategies for Skeptic. Improve by averaging (approach of
this talk).

3. Start with strategies for Reality (probability disributions). Improve by
averaging (Bayesian theory).
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